508 research outputs found

    Achieving High Aspect Ratio of Track Length to Width in Molds for Discrete Track Recording Media

    Get PDF
    Discrete track media (DTM) fabricated by nanoimprint lithography (NIL) is considered as a potential technology for future hard disk drives (HDD). In the fabrication of a master mold for NIL, patterning the resist tracks with a narrow distribution in the width is the first critical step. This paper reports the challenges involved in the fabrication of high aspect ratio discrete tracks on Polymethylmethacrylate (PMMA) resist by means of electron beam lithography. It was observed that fabrication parameters applied for successful patterning of discrete tracks in nanoscale length were not directly suitable for the patterning of discrete tracks in micron scale. Hence different approaches such as thick layer resist coating, introducing of post exposure baking process, and varying of exposure parameters were used in order to achieve uniform sharp discrete tracks in micron scale length on the resist. The optimal parameters were used to pattern 20 μm long tracks with 70 nm track pitch on the resist

    Achieving High Aspect Ratio of Track Length to Width in Molds for Discrete Track Recording Media

    Get PDF
    Discrete track media (DTM) fabricated by nanoimprint lithography (NIL) is considered as a potential technology for future hard disk drives (HDD). In the fabrication of a master mold for NIL, patterning the resist tracks with a narrow distribution in the width is the first critical step. This paper reports the challenges involved in the fabrication of high aspect ratio discrete tracks on Polymethylmethacrylate (PMMA) resist by means of electron beam lithography. It was observed that fabrication parameters applied for successful patterning of discrete tracks in nanoscale length were not directly suitable for the patterning of discrete tracks in micron scale. Hence different approaches such as thick layer resist coating, introducing of post exposure baking process, and varying of exposure parameters were used in order to achieve uniform sharp discrete tracks in micron scale length on the resist. The optimal parameters were used to pattern 20 μm long tracks with 70 nm track pitch on the resist

    Composite structural motifs of binding sites for delineating biological functions of proteins

    Get PDF
    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs which represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.Comment: 34 pages, 7 figure

    Automated cardiovascular magnetic resonance image analysis with fully convolutional networks

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images. Methods: Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV). Results: By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement was 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric was 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability. Conclusions: We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures

    Influence of handler relationships and experience on health parameters, glucocorticoid responses and behaviour of semi-captive Asian elephants

    Get PDF
    Declining wild populations combined with accumulating captive populations of e.g. livestock, pets, draught and zoo animals have resulted in some threatened species with substantial proportions of their populations in captivity. The interactions animals have with humans in captivity depend on handler familiarity and relationship quality and can affect animal health, growth and reproduction with consequences for the success of conservation programmes. However, assessments of how specific human–animal relationships affect a range of physiological and behavioural outcomes are rare. Here, we studied semi-captive Asian elephants with detailed records of elephant–handler (mahout) relationships and veterinary management, allowing assessment of multiple welfare indicators in relation to specific mahout–elephant relationship lengths and mahout experience. These included measures of physiological stress (faecal glucocorticoid metabolite [FGM], heterophil:lymphocyte ratio [H:L]), muscle damage (creatine kinase [CK]), immunological health (total white blood cell count [TWBC]) and behaviour (response to mahout verbal commands). We found no evidence that FGM or H:L related to aspects of the mahout–elephant relationship. Longer overall mahout experience (i.e. years of being a mahout) was linked to increased muscle damage and inflammation, but the lengths of specific mahout–elephant relationships were inversely associated with muscle damage in working-age elephants. Elephants responded more to familiar mahouts in behavioural tasks and faster to mahouts they had known for longer. In summary, our results found little evidence that the mahout–elephant relationship affects physiological stress in this population based on FGM and H:L, but mahout experience and relationships were linked to other physiological responses (CK, TWBC), and elephants require behavioural adjustment periods following mahout changes. Key words: Animal welfare, glucocorticoids, human–animal interactions, human–animal relationships, mahout, physiology</p

    Where will the dhole survive in 2030? Predicted strongholds in mainland Southeast Asia

    Get PDF
    Dhole (Cuon alpinus) is threatened with extinction across its range due to habitat loss and prey depletion. Despite this, no previous study has investigated the distribution and threat of the species at a regional scale. This lack of knowledge continues to impede conservation planning for the species. Here we modeled suitable habitat using presence-only camera trap data for dhole and dhole prey species in mainland Southeast Asia and assessed the threat level to dhole in this region using an expert-informed Bayesian Belief Network. We integrated prior information to identify dhole habitat strongholds that could support populations over the next 50 years. Our habitat suitability model identified forest cover and prey availability as the most influential factors affecting dhole occurrence. Similarly, our threat model predicted that forest loss and prey depletion were the greatest threats, followed by local hunting, non-timber forest product collection, and domestic dog incursion into the forest. These threats require proactive resource management, strong legal protection, and cross-sector collaboration. We predicted &lt;20% of all remaining forest cover in our study area to be suitable for dhole. We then identified 17 patches of suitable forest area as potential strongholds. Among these patches, Western Forest Complex (Thailand) was identified as the region's only primary stronghold, while Taman Negara (Malaysia), and northeastern landscape (Cambodia) were identified as secondary strongholds. Although all 17 patches met our minimum size criteria (1667 km(2)), patches smaller than 3333 km(2) may require site management either by increasing the ecological carrying capacity (i.e., prey abundance) or maintaining forest extent. Our proposed interventions for dhole would also strengthen the conservation of other co-occurring species facing similar threats. Our threat assessment technique of species with scarce information is likely replicable with other endangered species

    An International Comparison of Presentation, Outcomes and CORONET Predictive Score Performance in Patients with Cancer Presenting with COVID-19 across Different Pandemic Waves.

    Get PDF
    Patients with cancer have been shown to have increased risk of COVID-19 severity. We previously built and validated the COVID-19 Risk in Oncology Evaluation Tool (CORONET) to predict the likely severity of COVID-19 in patients with active cancer who present to hospital. We assessed the differences in presentation and outcomes of patients with cancer and COVID-19, depending on the wave of the pandemic. We examined differences in features at presentation and outcomes in patients worldwide, depending on the waves of the pandemic: wave 1 D614G (n = 1430), wave 2 Alpha (n = 475), and wave 4 Omicron variant (n = 63, UK and Spain only). The performance of CORONET was evaluated on 258, 48, and 54 patients for each wave, respectively. We found that mortality rates were reduced in subsequent waves. The majority of patients were vaccinated in wave 4, and 94% were treated with steroids if they required oxygen. The stages of cancer and the median ages of patients significantly differed, but features associated with worse COVID-19 outcomes remained predictive and did not differ between waves. The CORONET tool performed well in all waves, with scores in an area under the curve (AUC) of &gt;0.72. We concluded that patients with cancer who present to hospital with COVID-19 have similar features of severity, which remain discriminatory despite differences in variants and vaccination status. Survival improved following the first wave of the pandemic, which may be associated with vaccination and the increased steroid use in those patients requiring oxygen. The CORONET model demonstrated good performance, independent of the SARS-CoV-2 variants

    aPKC controls endothelial growth by modulating c-Myc via FoxO1 DNA-binding ability

    Get PDF
    Strict regulation of proliferation is vital for development, whereas unregulated cell proliferation is a fundamental characteristic of cancer. The polarity protein atypical protein kinase C lambda/iota (aPKCλ) is associated with cell proliferation through unknown mechanisms. In endothelial cells, suppression of aPKCλ impairs proliferation despite hyperactivated mitogenic signaling. Here we show that aPKCλ phosphorylates the DNA binding domain of forkhead box O1 (FoxO1) transcription factor, a gatekeeper of endothelial growth. Although mitogenic signaling excludes FoxO1 from the nucleus, consequently increasing c-Myc abundance and proliferation, aPKCλ controls c-Myc expression via FoxO1/miR-34c signaling without affecting its localization. We find this pathway is strongly activated in the malignant vascular sarcoma, angiosarcoma, and aPKC inhibition reduces c-Myc expression and proliferation of angiosarcoma cells. Moreover, FoxO1 phosphorylation at Ser218 and aPKC expression correlates with poor patient prognosis. Our findings may provide a potential therapeutic strategy for treatment of malignant cancers, like angiosarcoma

    Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error : the CREAM consortium

    Get PDF
    Peer reviewe
    corecore